Multi-Classifier Adaptive Training: Specialising an Activity Recognition Classifier Using Semi-supervised Learning
نویسندگان
چکیده
When an activity recognition classifier is deployed to be used with a particular user, its performance can often be improved by adapting it to that user. To improve the classifier, we propose a novel semisupervised Multi-Classifier Adaptive Training algorithm (MCAT) that uses four classifiers. First, the General classifier is trained on the labelled data available before deployment. Second, the Specific classifier is trained on a limited amount of labelled data specific to the new user in the current environment. Third, a domain-independent meta-classifier decides whether to classify a new instance with the General or Specific classifier. Fourth, another meta-classifier decides whether to include the new instance in the training set for the General classifier. The General classifier is periodically retrained, gradually adapting to the new user in the new environment where it is deployed. The results show that our new algorithm outperforms competing approaches and increases the accuracy of the initial activity recognition classifier by 12.66 percentage points on average.
منابع مشابه
Combining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملSemi-supervised Learning for Adaptation of Human Activity Recognition Classifier to the User
The success of many ambient intelligence applications depends on accurate prediction of human activities. Since posture and movement characteristics are unique for each individual person, the adaptation of activity recognition is essential. This paper presents a method for on-line adaptation of activity recognition using semi-supervised learning. The method uses a generic classifier trained on ...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012